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We review methods of understanding cellular interactions through computation in order
to guide the synthetic design of mammalian cells for translational applications, such as
regenerative medicine and cancer therapies. In doing so, we argue that the challenges
of engineering mammalian cells provide a prime opportunity to leverage advances in
computational systems biology. We support this claim systematically, by addressing each
of the principal challenges to existing synthetic bioengineering approaches—stochasticity,
complexity, and scale—with specific methods and paradigms in systems biology.
Moreover, we characterize a key set of diverse computational techniques, including
agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations,
with specific utility toward synthetic biology. Lastly, we examine the mammalian
applications of synthetic biology for medicine and health, and how computational systems
biology can aid in the continued development of these applications.
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INTRODUCTION AND OVERVIEW
Over the past three decades, rapid advances in computational
power, subcellular data resolution, and the sophistication of bio-
engineering design has led to cellular machinery being increas-
ingly controlled for practical application (Buetow, 2005; Cheng,
2007; Vendruscolo and Dobson, 2011). The advent of this field
of “synthetic biology” has been touted as a reservoir of novel
solutions for many of society’s most pressing problems, includ-
ing challenges in computing, health, and regenerative medicine
(Gersbach et al., 2007; Lu et al., 2009; Ruder et al., 2011). For
instance, the creation of the first-ever genetic toggle switch and
the repressilator by synthetic biologists at the turn of the century
allowed for an unprecedented degree of cellular control—and, in
the case of the former, a digital state that could lay the ground-
work for organic computing (Elowitz and Leibler, 2000; Gardner
et al., 2000). In subsequent years, biologists constructed oscil-
lators (capable of biological timekeeping), pulse generators (for
transcellular signal transmission), and even signaling filters (for
cellular signal processing) through carefully mapped gene circuits
(Basu et al., 2004, 2005; Stricker et al., 2008; Khalil and Collins,
2010).

However, while each of these individual discoveries led to
numerous applications of genetic engineering in biomedicine, we
still lack tools with the robustness required for transformative
applications. For instance, true “plug-and-play” cellular machines
remain a work in progress, in part due to the heterogeneity
and adaptability of biological networks (Kobayashi et al., 2004;
Arkin, 2008). The routine engineering of mammalian cells, too,
is still a distant possibility (Khalil and Collins, 2010). Because
synthetic biology has largely been applied to microbes due to
mammalian cell complexity, its impact on medicine has been
limited.

Achieving these benchmarks is admittedly easier said than
done. Whereas the promises and potential of the synthetic biology
field lie in characterizing the cellular alphabet, the puzzle of words
and sentences that define cell signaling and behavior currently
present a higher order of complexity (Endy, 2005). Moreover, the
field of synthetic biology is still in its infancy, compared to the
equivalent of “the Wright brothers . . . putting pieces of wood
and paper together” (Kwok, 2010). Some leading researchers have
even suggested that “the complexity of synthetic biological sys-
tems over the past decade has reached a plateau” (Purnick and
Weiss, 2009).

One way biologists have started to reinvigorate the field is
through advances in combinatorial logic-based circuits (Lu et al.,
2009; Wang et al., 2011; Michelotti et al., 2012; Wang and Buck,
2012). These formalisms possess the distinct advantages of pro-
viding a standardized framework that is adaptable across levels
of abstraction as well as dynamical properties that can be esti-
mated and combined by straightforward mathematical opera-
tions. Showing early progress, combinatorial logic-based circuits
have been designed into sophisticated information processing
tools in clonal mammalian cells like HeLa and MCF-7 (Xie
et al., 2011; Nevozhay et al., 2013). However, noise, heterogene-
ity, complexity of structure, and time-dependent rewiring across
biological scales limit the degree of control enabled by these
experimental methods (Purnick and Weiss, 2009; Kwok, 2010).
We propose that these challenges can be tackled by capitalizing
on advances in computational systems biology that are uniquely
valuable for synthetic cell design. We argue that a new perspec-
tive on the role of systems modeling in synthetic biology can
promote the development of new therapies for human health by
enabling the complex design capability required for mammalian
cell engineering.
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COMPUTATIONAL TECHNIQUES AND ADVANCES: SYSTEMS
BIOLOGY APPLICATIONS
Computational methods are widely employed within synthetic
biology as design tools, providing simulations of bioengi-
neered systems in advance of their cellular assembly (Chandran
et al., 2009; Ellis et al., 2009; Purnick and Weiss, 2009;
Smolke and Silver, 2011) (Figure 1). Historically, these cou-
pled computational-experimental approaches have contributed
to many of the “milestone” discoveries in the field over the
past two decades (Table 1). However, modeling used in synthetic
biology until now has been generally limited to biocircuits and
control systems, in part because the field emerged from genetic
engineering where circuit representations are common (Mukherji
and van Oudenaarden, 2009). The consequence of this limited
paradigm is that significant advances in human health from
this field remain out of reach, as gene circuit models prove to
be increasingly insufficient for characterizing mammalian cell
behavior (Purnick and Weiss, 2009).

In the aggregate, this “insufficiency” stems from a set of core
properties of biological systems that current synthetic approaches
do not fully capture: (1) scale, with the need to elicit controlled
behavior across cell, tissue, and organ levels (Miller et al., 2012);
(2) simultaneity, as defined by the highly networked nature of
cell signaling (Jeong et al., 2000, 2001; Marcotte, 2001); (3) state

FIGURE 1 | (A) PUBMED references to Systems and Synthetic biology over
the last four decades. (B) Recent advances in systems biology can be
applied toward surmounting specific limitations to existing synthetic
biology, paving the way to mammalian cell engineering.

adaptation dynamics, or the non-linear temporal fluctuations of
such networks (Slusarczyk et al., 2012); (4) shape, due to the
relevance of cell morphology in defining environmental interac-
tions (Ben-Ze’ev et al., 1988; Singhvi et al., 1994); (5) stochasticity,
with noise and randomness being significant determinants of cel-
lular behavior (Thattai and van Oudenaarden, 2001; Pedraza and
van Oudenaarden, 2005; Chopra and Kamma, 2006; Purnick and
Weiss, 2009); and (6) spatial dependencies, both intracellular and
extracellular in nature (Andrianantoandro et al., 2006). With the
present focus on microbial engineering, many of these character-
istics can be safely neglected; at mammalian levels of complexity,
they render the behavior of synthetic systems difficult to predict a
priori.

Although these challenges are manifold, they are not insur-
mountable. The answers may lie in systems biology. This com-
putational discipline seeks to shift the basic molecular biology
paradigm from isolation to coordination: from characterizing
individual components of cell behavior to analyzing how these
components function in tandem (Kitano, 2002a,b). Accordingly,
systems bioengineers bring a diverse array of computational
modeling techniques—drawing on mathematics, computer sci-
ence, and engineering—to bear on questions of both mech-
anism and design at the cell and tissue levels (Kitano, 2001;
Alon, 2007). In doing so, the field provides computational
tools to characterize behavioral patterns at the cellular level
that will be the building blocks of more sophisticated syn-
thetic design. Systems biology approaches are particularly pow-
erful in characterizing cell–cell interactions across scales, such
as in capillary patterning and organ development, where the
gene circuits approach in synthetic biology has proven limited
in capturing adaptation, cellular heterogeneity and spatial hier-
archy (Yingling et al., 2005; Qutub et al., 2009; Long et al.,
2013). As such, many of the challenges to applying synthetic
biology toward controlling mammalian tissue can be addressed
in part by methods and techniques that are well-developed
in systems bioengineering. Here, we discuss each of these
roadblocks categorically, with the associated tools to address
them.

SCALE: HIERARCHICAL, AGENT-BASED MODELING, AND RULE-BASED
FORMALISMS
Characterizing population-level emergent behavior and cell–cell
heterogeneity has long been recognized as a principal goal and
challenge in synthetic biology (Canton et al., 2008; Neumann and
Neumann-Staubitz, 2010; Young and Alper, 2010). Traditional
synthetic designs have assumed identical expression patterns
across a cell population, as the standard biocircuit framework
does not permit the simulation of cell behavioral variabil-
ity (Elowitz et al., 2002; Ozbudak et al., 2002; Blake et al.,
2003; You et al., 2004). Moreover, the limited capacity for
gene circuit models to characterize emergent behavior—defined
formally as patterns that emerge from a myriad of relatively sim-
ple interactions—inhibits scale-dependent design (Benner and
Sismour, 2005). As a mammalian example, if intricate cerebral
function results from the coordinated function of millions of
individual neurons, any synthetic design applied to the brain must
first require accurate simulations of how neural cell-level changes
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Table 1 | Synthetic biology milestones employing computational methods, as well as those that were built conceptually from computational

paradigms.

Synthetic biology milestone Computational method employed Year References

Bacterial toggle switch Receptor-ligand binding kinetics, gene circuit analysis,
analog computing

2000 Kramer et al., 2004

Repressilator Receptor-ligand binding kinetics, stochastic simulation,
gene circuit analysis

2000 Elowitz and Leibler, 2000

Stochastic gene expression Stochastic noise modeling 2002 Elowitz et al., 2002

Programmed bacterial population control Logistic ODE kinetics, gene circuit analysis 2004 You et al., 2004

Mammalian transgene switch Gene circuit analysis 2004 Kramer et al., 2004

Programmed pattern formation Logistic ODE kinetics, statistical analysis, gene circuit
analysis

2005 Basu et al., 2005

Engineered yeast produce artemesinin Gene circuit analysis 2006 Ro et al., 2006

Engineered bacteria target cancer by
expressing invasion

Gene circuit analysis 2006 Anderson et al., 2006

RNAi logic circuits Boolean evaluation, gene circuit analysis 2007 Xie et al., 2011

Creation of logic gates Gene circuit analysis, boolean operator models 2008 Win and Smolke, 2008

Bacterial edge detection Electronic signal processing, analog computing, gene
circuit analysis

2009 Tabor et al., 2009

Implementation of artificial genome Gene circuit analysis 2010 Gibson et al., 2010

Whole-cell computational model Flux balance analysis, poisson processes, ODEs,
receptor-ligand kinetics, stochastic simulation, boolean
operators

2012 Karr et al., 2012

manifest on the cerebral tissue-level. Deriving such scale-driven
causal links from observed principles is non-trivial at best.

One systems biology method to address the research challenge
of emergence in biology is agent-based modeling. The approach
has a simple premise: such systems exhibit emergent behav-
ior that arises from the interactions between individual actors
(or agents) and, consequently, would be impossible to know a
priori (Chandran et al., 2009). An agent is defined here as a dis-
crete entity that has behavior, can adapt, carries “genetic codes,”
holds variables and data, is governed by individual rules, and is
spatially defined. Fundamentally, this class of modeling method
diverges from biocircuit models, which typically characterize fluc-
tuations in state variables governed by differential relationships.
Supplanting the latter’s top-down, intracellular perspective with
the former’s bottom-up, multi-scale viewpoint permits the sim-
ulation of heterogeneity while eliminating the need to derive
inter-scale relationships beforehand (Chandran et al., 2009).

Notably, agent-based modeling encompasses a broad range
of variations in implementation, rather than any specific algo-
rithm or rule-set. Existing libraries, such as MASON, Repast,
and Swarm, allow for the construction of multi-scale agent-
based models atop adaptable frameworks, facilitating their use
by synthetic biologists with limited prior exposure to the tech-
nique. This methodology has been employed toward modeling
brain capillary regeneration (Long et al., 2013), immunologi-
cal and inflammatory responses (Bailey et al., 2007; Chandran
et al., 2009; Pothen et al., 2013), and cancer progression (Wang
et al., 2009; Basanta et al., 2012; Wodarz et al., 2012; Walker
and Southgate, 2013), among other topics. Within synthetic
biology specifically, agent-based models have also simulated
tissue development, tissue formation, and microbial chemotaxis
(Endler et al., 2009).

Similarly rule-based formalisms are also being applied to
coarse-grain patterns in chemical-kinetic models (Feret et al.,
2009; Yang et al., 2010), providing scalable tools to describe com-
plex interactions in cellular systems that begin at the molecular
level.

SIMULTANEITY: GRAPH THEORY AND NETWORK ANALYSIS
Forecasting interactions and dynamics in protein and metabolic
pathways is crucial for fine-tuned control of mammalian synthetic
bioengineering. Whereas traditional kinetic- and gene circuit-
based methods use simplified pathways to represent these signal-
ing dynamics, in many cases the relationships between molecules
are highly non-linear (Marcotte, 2001) and multiplex, i.e., multi-
ple inputs combine to a single output. Signals that propagate from
A->B->C at regular intervals are rare; more common are those
for which such variations as A->C<->B and B->A->C->A
dictate the targeted result, with time- and state-dependent tran-
sitions (Kestler and Kühl, 2008). Common, too, are linkages
between parallel molecular pathways that each simultaneously
affect the output of the other (Jeong et al., 2000, 2001). These
oscillations render more complex cell pathways intractable for
traditional biocircuit methods, which are generally based on small
set of ordinary differential equations (ODEs) (Kestler and Kühl,
2008).

Several types of network models allow for better predictive
simulation of these multiplex interactions. Graph methods, for
example, are a class of models that represent pathway components
as networked nodes, and graph-based approaches have been used
to model cellular machinery including genes, proteins and other
subcellular compartments (Ma’ayan et al., 2005; Pe’er, 2005). The
interactions between components are drawn as edge connections
between the relevant nodes (Ma’ayan et al., 2005). Graph-based

www.frontiersin.org October 2013 | Volume 4 | Article 285 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Rekhi and Qutub Systems approaches for synthetic biology

models vary in implementation to capture different kinds of
molecular relationships (e.g., Boolean gene expression, stochas-
tic transitions between molecular states), but are all particularly
adept at identifying complex network modules, or certain struc-
tural features that “dominate” the behavior of the larger network.
In mammalian cells, as an example, researchers have had early
success in characterizing the dynamics of key feedforward mod-
ules and motifs, helping to enable the circuit design of adaptive
gene expression (Bleris et al., 2011).

One common type of acyclic graph method, known as
Bayesian Network Analysis, is a form of directed statistical mod-
eling designed to capture conditional dependencies between
probabilistic events (Pe’er, 2005). In a Bayesian network model,
probabilities define the relationship between the current node
and its predecessor or parent in a graph (Alterovitz et al.,
2007). Markov models are another network-based technique
that can provide a framework to describe molecular or cellu-
lar states and the weighted probability of transitioning between
them. The power of these methods lies in their ability to
facilitate the reverse engineering of multiplex networks based
on molecular expression, molecular activity and/or cell behav-
ior data, serving as a precursor to synthetic modifications of
existing molecular pathways (Barnes et al., 2011). However,
for gene or protein pathways with more complex topology—
such as those examples offered above—cyclic graph models
might be necessary, for which a variety of analytical tools and
approaches are described by computational biologists in the liter-
ature (particularly from research on neural networks) (Bianchini
et al., 2006; Scarselli et al., 2009; Bowsher, 2010; Bonnet et al.,
2013).

STATE ADAPTATION DYNAMICS: EVOLUTIONARY MODELS,
OPTIMIZATION ALGORITHMS
In parallel with the above techniques, another suite of com-
putational methods permits not only the analysis of cellular
pathways, but also directly facilitates their synthetic design.
Known as evolutionary algorithms, these methods can pre-
dict state changes in the behavior of signaling pathways over
time, through adaptation or random mutation, by model-
ing this rewiring directly (Hallinan et al., 2010; Chen et al.,
2011; Mobashir et al., 2012). In the same vein, these meth-
ods allow for the de novo construction and optimization of
genetic networks by way of simulation (Bloom and Arnold,
2009), “evolving” a set of viable pathway designs that meet
the specified constraints (Hallinan et al., 2010). Though these
algorithms vary in construction, a subset of methods known
as genetic algorithms—in which populations of potential net-
works “compete” against each other—are of particular util-
ity to synthetic biologists due to their ease-of-implementation
(Mitchell, 1998). Many alternative optimization techniques exist,
e.g., simulated annealing, hill climbing, and gradient descent,
which can be applied to optimize synthetic network archi-
tectures and the design of synthetic constructs (Zomaya and
Kazman, 2010). In addition to these, combinatorial “tuning”
strategies have been successfully applied toward model-guided,
programmable control of gene expression in mammalian cells via
RNAi (Beisel et al., 2008). A unique advantage of evolutionary

and optimization algorithms is their ability to (A) be applied
broadly to many forms of models, including ODEs and rule-based
simulations and (B) generate a diverse array of functional net-
work topologies.

SHAPE: MORPHOLOGICAL MODELING AND COMPUTATIONAL CELL
PHENOTYPING
Thus, far, synthetic biology research has largely omitted stud-
ies on cell shape. The few exceptions in the literature focus on
morphological properties as reporters for specific signaling cas-
cades or to control specific spatial features (Yeh et al., 2007;
Tanaka and Yi, 2009). For instance, one recent work described
controlled shape changes of synthetic yeast cells (Tanaka and Yi,
2009). Rather than modeling how a gene circuit would induce
specific cell morphology a priori, the study’s authors varied α-
factor pathway inputs to observe shape changes until the desired
shape was achieved—in this case, one that upregulated the forma-
tion of mating projections (Tanaka and Yi, 2009). Another study
scored filopodial and lamellipodial phenotypes as indicators for
successful synthetic rewiring of Rho GTPase signaling (Yeh et al.,
2007).

Despite the few studies in this area, cell morphology is often a
characteristic of central importance to synthetic biology exper-
iments. For instance, synthetic systems seeking to modulate
cell–cell interactions must necessarily account for morphologi-
cal and spatial-dependent interactions between cells (Ben-Ze’ev
et al., 1988; Singhvi et al., 1994). These membrane adjacency and
receptor localization are drivers of pathways like Delta-Notch sig-
naling, in which a signaling cascade is triggered by the binding
of two transmembrane proteins on adjacent cells (Appel et al.,
2001). Moreover, cell behavior—and at a higher scale, tissue
functionality—is often predicated on geometry (Haeuptle et al.,
1983). For example, optimizing a synthetic cell for metabolic fil-
tration necessitates that its membrane surface area be maximized
for nutrient exchange, such as through inward folds (Gahan,
2005). Doing so requires leveraging computational modeling to
predict three-dimensional shape response to changes in genetic
circuit design.

Examples of methods for geometrical-rendered modeling of
cells include tensegrity models, Voronoi-based simulations, and
molecular dynamics models. The concept of “tensegrity” stems
from geodesic design, in which an object’s shape is maintained
through the joint effect of structural members in continuous
tension and those in discontinuous compression (Huang et al.,
2006). Though abstract in concept, computational models of
tensegrity have been demonstrated to approximate cell shape
and mechanics, providing a representation for simulating cell
morphology in vitro (Huang et al., 2006). Tensegrity principles
have been used to represent cytoskeletal elements, allowing for
changes in these proteins induced by regulatory networks (e.g.,
focal adhesion kinases) to be assessed for their effects on cell shape
(Kardas et al., 2013). An alternative geometrical model is the
Voronoi diagram, a mathematical concept of dividing space into
distinct regions based on proximity to initial seed points. Voronoi
diagrams provide a useful means of constraining complex cell
shapes into adjacent spatial tessellations, a technique particularly
useful to study patterning at the cell population- or tissue-level
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(Schaller and Meyer-Hermann, 2005; Luengo-Oroz et al., 2008).
Lastly, molecular dynamics simulations of cell shape represent
cells as collections of individual molecules in Newtonian motion,
either abstractly (as particles) or concretely (as cytoskeletal ele-
ments), to model an agglomerated cellular structure at high
resolution—albeit at greater computational cost (Rapaport, 2004;
Pfaendtner et al., 2010).

Linking geometric-based models to gene network simulations
offers the opportunity to guide synthetic biocircuit design in
silico such that specific cell morphologies can be engineered.
Previously, this method has led to a complete representation of
osteocyte cytoskeleton dynamics (Kardas et al., 2013). In con-
junction, computational cell phenotyping enables changes in
morphology to be quantitatively measured and tracked, such
that the desired design can be achieved. Phenotyping tech-
niques couple high-fidelity cell imaging with processing met-
rics to parse shape information (Chung et al., 2008; Sozzani
and Benfey, 2011; Ryan et al., 2013). These shape metrics
can facilitate the computer-aided design of synthetic net-
works.

STOCHASTICITY: GILLESPIE ALGORITHM AND MONTE CARLO
METHODS
Perhaps the most significant research challenge in synthetic bio-
engineering is enabling the design of cellular systems that are
robust to biological stochasticity (Chopra and Kamma, 2006;
Purnick and Weiss, 2009). Existing gene circuit models are largely
deterministic, behaving in highly reproducible ways. These mod-
els, as alluded to previously, present regulatory networks as
homogeneous concentrations of molecules modulated by param-
eterized rate constants through coupled differential equations.

Yet there exists increasing evidence that biological networks
and intracellular behavior are innately stochastic (Thattai and van
Oudenaarden, 2001). Whereas noise effects are often assumed to
be negligible at the population level, noise can play a significant
role at the single-cell level, e.g., where a small number of molec-
ular interactions may trigger a cascade of downstream protein
signaling (Thattai and van Oudenaarden, 2001; Pedraza and van
Oudenaarden, 2005). Furthermore, research indicates the phe-
nomenon of noise propagation, in which cell-level stochasticity
can accrue at the population-level to create emergent behavior
that deviates substantially from the desired target, a phenomena
recently documented in E. Coli, leading to a loss of synchrony
between cells (Hooshangi et al., 2005; Hornung and Barkai,
2008). Such studies suggest that complex synthetic systems can-
not be engineered without first accounting for stochasticity in the
circuit design.

Fortunately, there exist a wide variety of computational tech-
niques to capture and predict this biological stochasticity at the
systems level. One specific approach, known as the Gillespie
Algorithm, rejects the deterministic ODE approach of model-
ing chemical-kinetics in favor of stochastic representations of
molecular interactions (Gillespie, 2007). This algorithm explicitly
simulates each “reaction” (or interaction event) along a network,
with the probability of a successful “reaction” dependent on both
the rate properties and a random walk (Gillespie, 2007). For
synthetic biology applications, these reactions can be defined as

discrete regulatory steps along a specific gene circuit, allowing the
effects of noise along the circuit to be well-characterized.

The Gillespie algorithm belongs to a larger class of stochas-
tic modeling techniques known as Monte Carlo methods, which
can be adapted to suit the needs of a specific biocircuit design
(Athale, 2001). Monte Carlo methods, while varied in implemen-
tation, share the property of employing random simulations over
many iterations to quantify properties of biological systems.

SPATIAL DEPENDENCIES: PARTICLE- AND LATTICE-BASED METHODS
Traditional synthetic biology designs are based on assumptions
of biochemically homogenous cell interiors, but for gene cir-
cuit designs of higher complexity, this set of assumptions is
unlikely to hold (Agapakis et al., 2012). Often, the spatial infor-
mation associated with a protein or pathway inside the cell can
influence the end-behavior of a molecular network (Agapakis
et al., 2012). In addition to variations in metabolic conditions
(e.g., pH levels), spatial cues can also present as receptor- or
organelle- localization, intracellular polarity, and even topologi-
cal sequestration (Harold, 1991; Roze et al., 2011; Lee et al., 2012).
Characterizing intracellular spatial dependences and molecular
dynamics becomes particularly important in mammalian cells,
for which fine spatial organization of regulatory pathways is
commonplace.

To this end, particle- and lattice-based computational tech-
niques can be employed to model spatial systems within a syn-
thetic cell (Spicher et al., 2011; Klann and Koeppl, 2012). Rather
than simulate bulk flow, particle-based models track molecules
separately and in discrete quantities (Takahashi et al., 2005), as
alluded to above in the description of molecular dynamic mod-
els (see the Shape section). In systems biology, such methods
have already been applied toward characterizing single-cell gra-
dient sensing in the presence of multiple competitive ligands
(Liou and Chen, 2012). Particle models could be similarly appli-
cable to synthetic biology in engineering mammalian cells to
function as fine-tuned hypoxic or nitric oxide sensors, in an
effort to minimize effects of ischemic stroke—to name just one
instance.

The complexity of particle models is mitigated by the avail-
ability of open source simulators, including E-Cell and ChemCell
(Klann and Koeppl, 2012). Many of these implementations also
allow particle simulations to be combined with models of other
classes. As an example, a spatial derivative of the Gillespie algo-
rithm can integrate stochastic modeling with space-dependent
computation (Takahashi et al., 2005).

Spatial modeling can also be performed using PDE mod-
els; examples include gene circuits defining chemical diffusion-
mediated interactions between localized cell populations (Song
et al., 2009). In other applications to synthetic biology,
these spatial techniques have been combined with mecha-
nistic models, such as kinetic RNA folding simulations, to
provide fine-tuned control of gene expression along a spe-
cific component of a regulatory pathway (Carothers et al.,
2011). PDE formalisms offer relative simplicity of construc-
tion compared to other spatiotemporal methods, with the
caveat of not being well-suited to highly heterogeneous spa-
tial environments.
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APPLICATIONS FOR MAMMALIAN CELLS AND HUMAN
HEALTH
Until now, the overwhelming focus of research and progress in
synthetic biology has been on prokaryotic cells: mostly bacteria
(commonly E. Coli) and assorted microbes. This is a natural con-
sequence of the knowledge gap described previously; prokaryotic
cells are orders of magnitude simpler than eukaryotic ones—not
to mention easier to manipulate. They could be said to represent
the “crawling” stage of synthetic biology. However, if the ultimate
goal of the discipline is to uncover novel therapeutic targets and
treatments in biomedicine, such strict characterization of non-
mammalian systems will restrain our ability to advance human
health. In the end, we must learn to walk.

To do so means confronting the complexity that the in vivo
mammalian system brings. Methods already employed in systems
biology to characterize this complexity can open up the bound-
aries of modern medicine. As an example, it is not difficult to
imagine a future where computational models enable the design

of synthetic neural progenitor cells programmed to promote
recovery post-ischemic stroke. To foster an era of personalized
medicine, this potential could revolutionize the manner in which
we approach tissue engineering: cells grown en masse, and then
programmed to meet the specific needs of the patient. Moreover,
such customizable cells would permit targeted regeneration to
a degree that simple stem cell treatments cannot achieve. Such
innovations, while distant, are attainable, but they necessitate the
coupling of systems approaches with synthetic biology.

CONCLUDING COMMENTS
Bringing the sister disciplines of synthetic and systems biol-
ogy closer together could recast the gene circuit paradigm, and
enhance our ability to engineer and program cells for applica-
tions across energy, computing and biomedicine. Leveraging a
computational toolkit refined by systems biologists for the last
half-century offers a unique catalyst that to help pave the future
of synthetic biology.
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